Quantitative assessment of pressure sore generation and healing through numerical analysis of high-frequency ultrasound images.

نویسندگان

  • Sahar Moghimi
  • Mohammad Hossein Miran Baygi
  • Giti Torkaman
  • Ali Mahloojifar
چکیده

Abstract-This article focuses on the development of a method to quantitatively assess the healing process of artificially induced pressure sores using high-frequency (20 MHz) ultrasound images. We induced sores in guinea pigs and monitored predefined regions on days 3, 7, 14, and 21 after sore generation. We extracted relevant parameters regarding the tissue echographic structure and attenuation properties. We examined tissue healing by defining a healing function that used the extracted parameters. We verified the significance of the extracted features by using analysis of variance and multiple comparison tests. The features displayed ascending/descending behavior during wound generation and reverse behavior during healing. We optimized the parameters of our healing function by using a pattern search method. We tested the efficiency of the optimized values by calculating the healing function value on assessment days and then comparing these results with the expected pattern of changes in the tissue conditions after removing the applied pressure. The results of this study suggest that the methodology developed may be a viable tool for quantitative assessment of pressure sores during their early generation as well as during healing stages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic evaluation of pressure sore status by combining information obtained from high-frequency ultrasound and digital photography

In this study, the different phases of pressure sore generation and healing are investigated through a combined analysis of high-frequency ultrasound (20 MHz) images and digital color photographs. Pressure sores were artificially induced in guinea pigs, and the injured regions were monitored for 21 days (data were obtained on days 3, 7, 14, and 21). Several statistical features of the images we...

متن کامل

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

Numerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator

Introduction High intensity focused ultrasound (HIFU) is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperatu...

متن کامل

The Effects of Pentoxifylline on the Wound Healing Process in a Rat Experimental Pressure Sore Model

Introduction: The present study used a histological evaluation method to examine the effects of pentoxifylline (PTX) on healing an experimentally-induced pressure sore in a rat model. Materials and Methods: There were 36 adult male rats used in this study. Under general anesthesia and sterile conditions, we used forceps to create one pressure sore on each rat. A double layer of folded skin...

متن کامل

Time Frequency Analysis of Higher Harmonic Generation in a Three Color Laser Pulse

high harmonic generation is a useful tool for the generation of short, intense attosecond pulses. In order to simulate high harmonic generation, we performed a numerical solution to the time dependent Schrödinger equation. by considering dipole approximation, we predicted generation of a 53 attosecond pulse. In order to see the time and frequency of emission of attosecond pulse, we exploit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of rehabilitation research and development

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2010